Bleomycin as an Oxene Transferase. Catalytic Oxygen Transfer to Olefins

Natesan Murugesan and Sidney M. Hecht*

Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901. Received June 6, 1983

Abstract: Admixture of oxidants such as iodosobenzene and sodium metaperiodate to solutions of Fe(III)-bleomycin and Cu(II)-bleomycin effected activation of these species. The active complexes thus formed were found to be capable of transferring oxygen to certain olefinic substrates, including cis-stilbene, styrene, norbornene, and cyclohexene. cis-Stilbene was converted to cis-stilbene oxide reasonably efficiently by bleomycin, but trans-stilbene was shown to be a poor substrate for bleomycin-mediated oxidation. The stereoselectivity of olefin oxidation was thus similar to that observed for cytochrome P-450 model systems, a characteristic also found for a number of other bleomycin-mediated transformations. Also analogous to observations made previously for cytochrome P-450 was the bleomycin-mediated N-demethylation of N,N-dimethylaniline and the oxidation of p-deuterioanisole to p-methoxyphenol with concomitant 1,2-migration of deuterium (NIH shift). However, in contrast to cytochrome P-450, which has been reported to induce asymmetry during the oxidation of certain prochiral substrates, bleomycin-mediated oxidation of styrene resulted in the formation of racemic styrene oxide. Also tested for their oxygen-transfer properties were a number of structural analogues of bleomycin, including epibleomycin, isobleomycin, deglycobleomycin, and N-acetylbleomycin. All of the tested species were found to be capable of effecting oxygen transfer to olefins with the exception of N-acetylbleomycin, which was also the only analogue dysfunctional in DNA degradation. Although investigated in less detail, it was also shown that oxidation of olefins could be achieved with Fe(II)-bleomycin + O_2 , provided that a suitable reducing agent was present. The results obtained are consistent with a mechanism in which the same activated species can be derived from suitable metallobleomycins via the agency of O2 and reducing agents or oxygen surrogates such as iodosobenzene and periodate.

The bleomycins are a family of glycopeptide-derived antitumor antibiotics used clinically for the treatment of squamous cell carcinomas and malignant lymphomas. Individual bleomycins differ structurally at the C-terminus; bleomycin A₂ (1) is the main

component of the clinically used mixture of bleomycins. 1,2 Current interest in the chemistry of bleomycin (BLM) is reflected in efforts to understand the mechanistic nature of DNA strand scission,³ which is the presumed therapeutic locus of bleomycin, and in the characterization of structural analogues of bleomycin which may have modified biochemical and biological properties.⁴ DNA strand scission by bleomycin is an oxidative process that can be

demonstrated in vitro by using Fe¹¹·BLM + O₂⁵ or Cu¹·BLM + O₂.6 The nature and structures of the oxygen-activated species have eluded exact definition and remain an area of active re-

Cytochrome P-450 is a group of widely distributed hemecontaining proteins that mediate the oxidative metabolism of a number of substances, including many xenobiotics.8 Cytochrome P-450 is a mixed-function monooxygenase; although normally activated by NADPH-ferricytochrome oxidoreductase, NADPH, and O_2 , activation can also be effected by the use of oxygen surrogates such as iodosobenzene.^{8,9} The latter approach has been particularly useful mechanistically in facilitating elucidation of the mechanism of oxygen activation and transfer, 9,10 in part because the active complexes so formed from a number of P-450 model systems catalyze a wide variety of oxidation reactions, including aliphatic hydroxylations and alkene epoxidation.8

^{(1) (}a) Umezawa, H. In "Bleomycin: Current Status and New Developments"; Carter, S. K., Crooke, S. T., Umezawa, H., Eds.; Academic Press: New York, 1978; p 15 ff. (b) Hecht, S. M. In "Bleomycin: Chemical, Biochemical and Biological Aspects"; Hecht, S. M., Ed.; Springer-Verlag: New York, 1979; p 1 ff.

^{(2) (}a) Umezawa, H. Lloydia 1977, 40, 67. (b) Crooke, S. T. In "Bleomycin: Current Status and New Developments"; Carter, S. K., Crooke, S. T., Umezawa, H., Eds.; Academic Press: New York, 1978; pp 9-14. (3) (a) Burger, R. M.; Berkowitz, A. E.; Peisach, J.; Horwitz, S. B. J. Biol. Chem. 1980, 255, 11832. (b) Giloni, L.; Takeshita, M.; Johnson, F.; Iden, C.; Grollman, A. P. J. Biol. Chem. 1981, 256, 8608. (c) Wu, J. C. Kozarich, L. W.; Stubbe, L. Biol. Chem. 1982, 256, 8608. J. W.; Stubbe, J. J. Biol. Chem. 1983, 258, 4694

^{(4) (}a) Kross, J.; Henner, W. D.; Haseltine, W. A.; Rodriguez, L.; Levin, M. D.; Hecht, S. M. *Biochemistry* 1982, 21, 3711. (b) Kross, J.; Henner, W. D.; Hecht, S. M.; Haseltine, W. A. *Biochemistry* 1982, 21, 4310. (c) Sugiura, Y.; Suzuki, T.; Otsuka, M.; Kobayashi, S.; Ohno, M.; Takita, T.; Umezawa, H. *J. Biol. Chem.* 1983, 258, 1328.

^{(5) (}a) Sausville, E. A.; Peisach, J.; Horwitz, S. B. Biochemistry 1978. 17. 2740. (b) Sausville, E. A., Stein, R. W.; Peisach, J.; Horwitz, S. B. Biochemistry 1978, 17, 2746.

^{(6) (}a) Oppenheimer, N. J.; Chang, C.; Rodriguez, L. O.; Hecht, S. M. J. Biol. Chem. 1981, 256, 1514. (b) Ehrenfeld, G. M.; Rodriguez, L. O.; Hecht, S. M.; Chang, C.; Basus, V. J.; Oppenheimer, N. J. Biochemistry, in

^{(7) (}a) Povirk, L. F. Biochemistry, 1979, 18, 3989. (b) Sugiura, Y. Biochem. Biophys. Res. Commun. 1979, 90, 375. (c) Burger, R. M.; Peisach, J.; Blumberg, W. E.; Horwitz, S. B. J. Biol. Chem. 1979, 254, 10906. (d) Burger, R. M.; Peisach, J.; Horwitz, S. B. Ibid. 1981, 256, 11636. (e) Rodriguez, L. O.; Hecht, S. M. Biochem. Biophys. Res. Commun. 1982, 104, 1470. (f) Kuramochi, H.; Takahashi, K.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1981, 34, 576.

^{(8) (}a) White, R. E.; Coon, M. J. Annu. Rev. Biochem. 1980, 49, 315 and references therein. (b) Guengerich, F. P.; Macdonald, T. L. Acc. Chem. Res. 1984, 17, 9.

^{(9) (}a) Groves, J. T.; Krichnan, S.; Avaria, G. E.; Nemo, T. E. Adv. Chem. Ser. 1980, 191, 277. (b) Tabushi, I.; Koga, N. Adv. Chem. Ser. 1980, 191,

^{(10) (}a) Hrycay, E. G.; Gustafasson, J. A.; Ingelman-Sundberg, M.; Ernster, L. Biochem. Biophys. Res. Commun. 1975, 66, 209. (b) Lichtenberger, F.; Nastainczyk, W.; Ullrich, V. Biochem. Biophys. Res. Commun. 1976, 70, 939. (c) Gustafasson, J. A.; Rondahl, L.; Bergman, J. Biochemistry 1979, 18, 865. (d) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101, 1032. (e) Chang, C. K.; Kuo, M. S. J. Am. Chem. Soc. 1979, 101, 1032. (e) Chang, C. K.; Kuo, M. S. J. Am. Chem. Soc. 1979, 101, 1032. (e) Chang, C. K.; Kuo, M. S. J. Am. Chem. Soc. 1979, 101, 1032. (e) Chang, C. K.; Kuo, M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 101, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. (f) Craw M. S. J. Am. Chem. Soc. 1979, 1012. 101, 3413. (f) Groves, J. T.; Kruper, W. J., Jr. J. Am. Chem. Soc. 1979, 101, 7613. (g) Lindsay Smith, J. R.; Sleath, P. R. J. Chem. Soc. Perkin Trans 2 1982, 1009. (h) Nee, M. W.; Bruice, T. C. J. Am. Chem. Soc. 1982, 104, 6123.

Recently, we demonstrated that Fe^{III}.BLM and Cu^{II}.BLM could also be activated by C_6H_5IO and that the derved activated species could be employed for oxygen transfer.¹¹ We also demonstrated that both Fe^{III}.BLM and Cu^{II}.BLM could be activated enzymatically by NADPH-ferricytochrome oxidoreductase, NADPH, and O_2 .¹² In addition to mediating the oxidative degradation of DNA, C_6H_5IO -activated Fe^{III}.BLM and Cu^{II}.BLM were also shown to oxidize *cis*-stilbene (to *cis*-stilbene oxide), but not *trans*-stilbene;¹¹ the selectivity observed in these transformations was strongly reminiscent of results obtained previously with cytochrome P-450 and analogues such as chloro($\alpha,\beta,\gamma,\delta$ -tetraphenylporphyrinato)iron(III).^{10d}

In an effort to better define the nature of oxygen activation and transfer by bleomycin, we have attempted to extend our observations of bleomycin activation and reactivity and to test further the apparent analogy between the chemistry of bleomycin and that of cytochrome P-450. Presently, we provide a complete analysis of the products formed from cis-stilbene and trans-stilbene by (anaerobically activated) Fe·BLM and Cu·BLM, as well as the effect of the specific oxygen surrogate and reaction solvent on the extent of transformation and ratio of products formed. Reported for the first time are the attempted oxidations of cyclohexene, norbornene, styrene, indene, and trans-cinnamic acid with Fe¹¹¹·BLM + C₆H₅IO; to facilitate comparison with comparable transformations mediated by cytochrome P-450 analogues, some of these substrates have also been oxidized using (tetraphenylporphyrinato)iron(III) (Fe¹¹¹·TPP) + C₆H₅IO. Also reported for the first time are the N-demethylation of N,N-dimethylaniline by Fe¹¹¹·BLM + C₆H₅IO, a BLM-mediated NIH shift, a study of the chirality of oxygen transfer from activated Fe-BLM to styrene, and the explicit identification of the source of oxygen transferred to the olefinic substrates studied here. In addition, we define an experimental system in which BLM can be used catalytically for the activation of O2 and from which the same reaction products are produced as observed following admixture of metallobleomycin + C₆H₅IO. To date, only bleomycin¹¹ and deglycobleomycin¹³ have been shown to mediate oxygen transfer to olefins. Reported herein are the oxygen-transfer properties of a number of bleomycin analogues previously shown to effect DNA strand scission when activated aerobically, including decarbamoyl bleomycin, isobleomycin, epibleomycin, and tallysomycin.

Results and Discussion

Cytochrome P-450 is a group of monooxygenases that can catalyze the oxidation of a wide variety of substrates in the presence of NADPH-cytochrome P-450 reductase, NADPH, and O₂. The mechanism of oxygen fixation by these heme proteins and the way in which the oxygen is transferred to other molecules have been subjects of much interest.8 There is a growing body of evidence which suggests that a perferryl ion is present as the active oxygen-transfer agent formed as part of a catalytic cycle; the initial step is envisioned as reductive activation of molecular oxygen by the heme proteins.8 The nature of the active species was deduced, in part, from extensive studies with model systems using monooxygen donors such as iodosobenzene, peroxide, etc.;¹⁰ the active intermediates thus formed were found to oxidize a wide variety of organic molecules.^{8,10} It may be noted that the type of oxidation accomplished in vitro by these model systems is believed to bear a close resemblance to the related enzymatic

In analogy with cytochrome P-450, Fe^{II}·BLM chelates molecular oxygen, and an active intermediate derived from this complex effects DNA strand scission by an oxidative process.^{5,7} BLM can also be activated with Fe^{III} and ethyl hydrogen peroxide

and the two activated complexes have been reported to be similar in nature. To facilitate a better understanding of the chemistry of bleomycin, it was of interest to study the oxidation of simple organic substrates by bleomycin following activation of bleomycin with oxygen surrogates such as iodosobenzene.

Oxidation of Olefins by Fe¹¹¹·BLM and Cu¹¹·BLM Following Activation with Iodosobenzene. As shown in Table I, when treated with 30–35 equiv of iodosobenzene in aqueous methanol, Fe¹¹¹·BLM effected its conversion to iodobenzene in ~80% yield within 30 min. In the presence of olefinic compounds, Fe¹¹¹·BLM effected the net transfer of oxygen from iodosobenzene to the substrates and, depending upon the structure and reactivity of the individual olefin, oxidized products could be isolated in varying yields. The products obtained with several olefin substrates are recorded in the table.

The greater reactivity of *cis*-stilbene relative to the trans isomer under the reaction conditions was evident from the yields of the products formed. cis-Stilbene, when used as a substrate, provided a number of products, the cis-oxide (25%) being the major one. The trans-oxide was produced only in 1% yield, demonstrating the stereoselectivity of the "oxygen transfer". In contrast, trans-stilbene was found to be a poor substrate under the same conditions as those used for cis-stilbene. Only 3% trans-oxide (and no cis-oxide) could be detected. As shown in the table, these results paralleled those obtained with (tetraphenylporphyrinato)iron(III) and C₆H₅IO under similar experimental conditions. In view of the recent report¹⁴ that C₆H₅IO exists as the dimethoxide in methanolic solution, the expoxidation of cis-stilbene was attempted in anhydrous methanol to permit assessment of the nature of the oxidant responsible for BLM activation. In the absence of water, no cis-stilbene oxide was formed from cis-stilbene, consistent with the belief that BLM is activated by C₆H₅IO per se. Also consistent with this interpretation was the successful epoxidation of cisstilbene in aqueous CH3CN (Table II).

Norbornene proved to be a better substrate for activated Fe-BLM than stilbene, affording the exo-epoxide in 31% yield as determined by gas chromatography-mass spectrometry. Cyclohexene, when used as a substrate for Fe¹¹¹·BLM + C₆H₅IO, provided the oxide (9%), cyclohex-1-en-3-ol (12%), and cyclohexane-1,2-diol monomethyl ether (39%) as major products. The stereochemistry of cyclohexane 1,2-diol monomethyl ether was studied on the chance that it might provide useful information concerning the mechanism of bleomycin-mediated oxygen transfer. Direct comparison with authentic samples of cis- and trans-cyclohexane 1,2-diol monomethyl ether established that the bleomycin-derived material was exclusively of the trans configuration. While this result is entirely consistent with the suggested mechanism outlined below, it must be noted that the same product was also formed from cyclohexene oxide when the latter was treated with Fe¹¹¹·BLM + C₆H₅IO under the same experimental conditions. Thus trans-cyclohexane 1,2-diol monomethyl ether may not be a primary product of BLM-mediated oxygen transfer to cyclohexene.

Also employed as substrates for Fe¹¹¹·BLM $A_2 + C_6H_5IO$ were styrene and indene, which were mainly converted to the respective epoxides. As described below, the former was of interest for the evaluation of possible chiral oxygen transfer by bleomycin.

It is interesting to note that unlike the reaction of activated Fe-bleomycin with DNA, for which it has been difficult to establish a catalytic role for bleomycin, as many as ~ 20 turnovers of bleomycin are indicated by the amounts of products formed in these experiments.

Cu¹-BLM undergoes aerobic activation and the redox-active species thus formed cleaves DNA.⁶ We therefore attempted to study oxygen transfer from Cu¹¹-BLM following activation with C_6H_5IO . The oxidation of *cis*-stilbene with this reagent provided *cis*-stilbene oxide, as noted previously.¹¹ Although the yields of *cis*-stilbene oxide were occasionally as high as those obtained with Fe¹¹¹-BLM, more typically the oxide was isolated in 3–7% yields along with larger amounts ($\sim 10\%$) of *O*-methylhydrobenzoin.

⁽¹¹⁾ Murugesan, N.; Ehrenfeld, G. M.; Hecht, S. M. J. Biol. Chem. 1982, 257, 8600.

⁽¹²⁾ Kilkuskie, R. E.; Macdonald, T. L.; Hecht, S. M. Biochemistry, in

⁽¹³⁾ Aoyagi, Y.; Suguna, H.; Murugesan, N.; Ehrenfeld, G. M.; Chang, L. H.; Ohgi, T.; Shekhani, M. S.; Kirkup, M. P.; Hecht, S. M. J. Am. Chem. Soc. 1982, 104, 5327.

The latter was shown to be a secondary product that can form from cis-stilbene oxide under the reaction conditions, and its presence probably accounts for the low and variable¹¹ yield of the oxide. As observed in the case of Fe¹¹¹·BLM, trans-stilbene also proved to be a poor substrate of Cu¹¹·BLM in the presence of iodosobenzene.

As regards yields and stereoselectivity of epoxide formation, the results obtained here were in broad agreement with those reported by Groves et al. 10d who used the cytochrome P-450 analogue chloro($\alpha, \beta, \gamma, \delta$ -tetraphenylporphyrinato)iron(III) and iodosobenzene on similar substrates. Especially striking was the difference in reactivity between *cis*- and *trans*-stilbene in the BLM-mediated oxidations when the reactions were carried out in aqueous methanol.

Oxygen Transfer by Activated Bleomycin. The source of the oxygen atom incorporated into *cis*-stilbene oxide during bleomycin-mediated epoxidation was studied by carrying out the transformation in the presence of ¹⁸O-labeled H₂O and C₆H₅IO. As shown in eq 1, the epoxidation of *cis*-stilbene with Fe^{III}·BLM

Fe (III) *BLM +
$$C_6H_5I^{18}O$$
 + $H_2I^{16}O$

$$+ C_6H_5 C_6H_5$$

$$C_6H_5 C_6H_5$$

$$98% I^{16}O$$

$$98% I^{16}O$$

and $C_6H_5I^{16}O$ in 4:1 $CH_3OH-H_2^{18}O$ resulted in the formation of cis-stilbene oxide ($\sim 18\%$ yield, based on consumed C_6H_5IO) containing 83% ^{18}O , as judged by mass spectral analysis. In comparison, when the expoxidation was carried out in aqueous methanol employing $C_6H_5I^{18}O^{15}$ as an oxidant, the resulting epoxide contained no more than 2% ^{18}O (eq 2). Incorporation of ^{18}O label into product was shown not to be due to $H_2I^{18}O-C_6H_5I^{16}O$ exchange; 16 that iodobenzene dimethoxide 14 was not an obligatory intermediate in the exchange process reflected in eq 1 and 2 was established by repetition of the experiments in water- CH_3CN . 17

Breslow and Gellman have described the tosylamidation of hexane by the use of (tosyliminoiodo)benzene and either Mn¹¹¹-or Fe¹¹¹·TPP(Cl)¹⁸ in CH₂Cl₂. When *cis*-stilbene was incubated in the prescence of Fe¹¹¹·BLM + C₆H₃I=NSO₂C₆H₄CH₃-p in aqueous methanol, the major product isolated (21% yield) was *cis*-stilbene oxide (eq 3); no product containing the tosylamido

$$C_{e}H_{5} = C_{6}H_{5} + Fe (III) *BLM + C_{6}H_{5}I = NSO_{2}C_{6}H_{4}CH_{3} + C_{6}H_{5} + C_{6}H_{5} + C_{6}H_{5}$$
(3)

functionality could be detected. Clearly, this observation was also consistent with the results of the ¹⁸O-incorporation experiments described above.

(15) Groves, J. T.; Kruper, W. J.; Houshalter, R. C.; Butler, W. M. Inorg. Chem. 1982. 21. 1363.

(17) Incubation of Fe(III)-BLM + $C_6H_5I^{16}O$ with cis-stilbene in a 4:1 mixture of $CH_3CN-H_2^{16}O$ provided cis-stilbene oxide containing 66% ¹⁸O. While reflecting slightly less efficient exchange than that obtained in aqueous methanol (cf. eq 1 and ref 16), this observation excluded iodobenzene dimethoxide as an obligatory intermediate in the exchange.

(18) Breslow, R.; Gellman, S. H. J. Chem. Soc., Chem. Commun. 1982,

The C_6H_5IO -mediated hydroxylations of cyclohexene¹⁹ and camphor,²⁰ carried out by cytochrome P-450 from rat liver and *Pseudomonas putida*, respectively, have also been shown to proceed with incorporation of label from solvent, but not from C_6H_5IO . In common with these cytochrome P-450 mediated transformations, it seems likely that the activated Fe·BLM that mediates the epoxidation of *cis*-stilbene contains a single oxygen atom bound to Fe, which is capable of undergoing exchange with solvent.

Oxygen Transfer to Prochiral Olefins. Recent reports of enantioselective sulfide oxidation by cytochrome P-450, 21 and of catalytic asymmetric epoxidations with chiral iron porphyrins, 22 prompted us to effect the epoxidation of two prochiral olefins with activated bleomycin. Oxidation of styrene with Fe^{III}·BLM + C₆H₅IO afforded styrene oxide in 18–20% yield. The material obtained did not have an optical rotation; determination of optical purity with the chiral shift reagent Eu(hfc)₃ indicated that the product was racemic. ²³

Activation of Fe-Bleomycin. Studies utilizing cytochrome P-450 have shown that, in addition to iodosobenzene, both iodobenzene diacetate and sodium metaperiodate function as oxygen surrogates in cytochrome P-450 dependent oxidation reactions. ^{10a} Therefore, these reagents were tested for their ability to support bleomycin-mediated olefin epoxidations.

When employed for Fe¹¹¹·BLM activation in the same fashion as C₆H₅IO, iodobenzene diacetate produced the same products from cis-stilbene in essentially the same relative amounts, albeit in significantly lower overall yields. Even when the reaction time was increased substantially (1.5 \rightarrow 12 h), the yield of *cis*-stilbene was only 7%. In contrast, when periodate was employed for the activation of Fe¹¹¹·BLM the products included cis-stilbene oxide (12-18%), deoxybenzoin (10-15%), and benzaldehyde $(\sim 5\%)$, but not trans-stilbene oxide. Activation of Fe¹¹¹·BLM A₂ with ethyl hydrogen peroxide was also studied; products included cis-stilbene oxide (17%), trans-stilbene oxide (\sim 2%), and deoxybenzoin (7%). Although the ratios of products obtained from cis-stilbene following Fe^{ill}·BLM activation with the four oxidants studied here were not absolutely identical, the HPLC product profiles were quite similar, suggesting that the individual BLM A₂ mediated olefin oxidations were basically analogous. These observations, though not conclusive, are consistent with the formation of a common activated complex from Fe¹¹¹·BLM A₂ and each of the four oxygen surrogates studied.

Although the active complex formed from BLM·Fe¹¹ + O₂ has been reported to be the same as the reactive species derived from BLM·Fe¹¹¹ + ethyl hydrogen peroxide, ^{7d} initial attempts to oxidize olefins with BLM·Fe¹¹ following aerobic activation were not successful. In the belief that this might be due to an insufficiency of reducing equivalents,6b several different reducing agents were utilized in an effort to increase the extent of reaction. The reducing agents employed included dithiothreitol, dithionite, 2-mercaptoethanol, and ascorbate. In each case the extent of reaction increased dramatically; typically, several products were formed, including those obtained with anaerobically activated Fe¹¹¹·BLM and others that must have arisen by reaction of the reducing agents with initially formed reaction products or intermediates. Activation of Fe¹¹·BLM in the presence of O₂ and ascorbate gave the results most nearly analogous to those obtained via anaerobic activation.

Other Bleomycin-Mediated Transformations. Microsomal monoxygenases have been shown to mediate the hydroxylation of a number of aromatic substrates. That these oxidations can proceed via arene oxide intermediates has been inferred from the

⁽¹⁶⁾ Incubation of $C_6H_3I^{16}O$ in methanolic solution in the presence of $H_2^{18}O$ under the conditions used for BLM-mediated formation of *cis-stilbene* oxide resulted in $\sim 40\%$ incorporation of ^{18}O into C_6H_3IO (as judged by mass spectral analysis of $(C_6H_3)_3PO$ following treatment of the incubation mixture with $(C_6H_3)_3P^{14}$). Analogous incubation of $C_6H_3I^{16}O$ in $CH_3CN-H_2^{18}O$ gave only $\sim 5\%$ ^{18}O exchange into C_6H_3IO . While the limited exchange observed into methanolic solution presumably involves the intermediacy of iodobenzene dimethoxide, this species is clearly insufficient to account for the observed ^{18}O content of *cis-stilbene* oxide (eq 1).

⁽¹⁹⁾ Macdonald, T. L.; Burka, L. T.; Wright, S. T.; Guengerich, F. P. Biochem. Biophys. Res. Commun. 1982, 104, 620.

⁽²⁰⁾ Heimbrook, D. C.; Sligar, S. G. Biochem. Biophys. Res. Commun. 1981, 99, 530.

⁽²¹⁾ Waxman, D. J.; Light, D. R.; Walsh, C. Biochemistry 1982, 21, 2499. (22) Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983, 105, 5791.

⁽²²⁾ Groves, J. T.; Myers, R. S. J. Am. Chem. Soc. 1983, 105, 5791. (23) (a) Fraser, R. R.; Petit, M. A.; Saunders, J. K. J. Chem. Soc., Chem. Commun. 1971, 1450. (b) Sullivan, G. R. Top. Stereochem. 1978, 10, 287-329.

Table I. Olefin Oxidation by Fe(III) + BLM + C₆H₅IO and Cu(II) + BLM + C₆H₅IO

oxidant	substrate				
Fe (III) • BLM A ₂ + C ₆ H ₅ IO	None		C ₆ H ₅ I (78, 85) OH		1b
Fe (Ⅲ) • BLM A ₂ + C ₆ H ₅ IO	\bigcirc	(9)	(12)	OH OCH ₃	(trace)
Fe (II I) • BLM A ₂ + C ₆ H ₅ IO		0	(1)	(1)	1a
Fe (III) • TPP (CI) + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ (40)	C ₆ H ₅ O C ₆ H ₅	C ₆ H ₅ C ₆ H ₅	16
Fe (III) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ (25, 22)	C ₆ H ₅	C ₆ H ₅ C ₆ H ₅	C_6H_5 C_6H_5 C_6H_5CHO 1b, 1c, 1d O OCH ₃ (5)
Fe (III) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H ₅	C_6H_5 C_6H_5 C_6H_5	C ₆ H ₅ C ₆ H ₅	C_6H_5 C_6H_5 $O_{(2)}$ OCH_3	1b. 1c. 1d
Cu (II) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ (3-7)	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ 1b, 1d HO OCH ₃
Cu (II) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ (<1)	C ₆ H ₅ O C ₆ H ₅	C ₆ H ₅ C ₆ H ₅	1b. 1d
Fe (III) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H ₅	C ₆ H ₅ (9. 21)	C_6H_5 CH_3 O $(trace)$		1c
Fe (III) • BLM A ₂ + C ₆ H ₅ IO		(9)			1c
Fe (II I) • BLM A ₂ + C ₆ H ₅ IO	C ₆ H₅	None DH			

^aYields were determined by (1a) gas chromatography-mass spectrometry, (1b) HPLC analysis, (1c) isolation, (1d) 360-MHz ¹H NMR analysis. ^bYields based on amount of added iodosobenzene; quantitative conversion was assumed.

observed 1,2-shift of substituents from the site of oxidation concomitant with formation of the phenolic OH group.86,24 Initial efforts to effect facile monohydroxylations of substrates such as naphthalene and anisole^{10g} using Fe¹¹¹·BLM + C₆H₅IO in aqueous methanol were largely unsuccessful, providing instead mixtures of (polyoxygenated) phenols. Subsequently, however, it was found that naphthalene could be converted predominantly to α -naphthol (162% yield, based on BLM) via the agency of Fe¹¹·BLM + O₂

+ ascorbate. Anisole was converted to p-methoxyphenol under the same conditions; both transformations were shown to be BLM dependent.

(24) Jerina, D. M.; Daly, J. W. Science (Washington, DC) 1974, 185, 573.

In an effort to establish the mechanism by which these transformations proceeded, p-deuterioanisole log (D content $\sim 80\%$) was next treated with Fe^{II}·BLM + O₂ + ascorbate in aqueous methanol. Again, hydroxylation of the aromatic substrate was observed; the p-methoxyphenol produced from each of a few different experiments was analyzed for deuterium content of the product, and it was found to be somewhat variable (15-21%) but always much less than that of the starting material. These observations are consistent with partitioning of an intermediate of type i (eq 4), which has been invoked previously in aromatic hydroxylations. 25,26

Cytochrome P-450 and related model systems have been shown to effect the oxidative N-demethylation of aromatic amines; the mechanism of the transformation has been studied in some detail. 8b,27 Interestingly, conversion of N,N-dimethylaniline to

⁽²⁵⁾ Sheldon, R. A.; Kochi, J. K. "Metal-Catalyzed Oxidations of Organic Compounds"; Academic Press: New York, 1981; pp 254-255.
(26) Castle, L.; Lindsay-Smith, J. R.; Buxton, G. V. J. Mol. Catal. 1980, 7, 235.

⁽²⁷⁾ Shannon, P.; Bruice, T. C. J. Am. Chem. Soc. 1981, 103, 4580.

N-methylaniline proceeded cleanly in the presence of Fe^{III}•BLM

CH₃
$$\rightarrow$$
 CH₃

Fe (III) • BLM

 \leftarrow C₆H₃IO

 \rightarrow Fe (III) • BLM + O₂

ascorbate

+ C₆H₅IO (40% yield based on C₆H₅IO; 1100% based BLM) or Fe^{II}·BLM + O₂ + ascorbate (140% yield based on BLM).

These additional bleomycin-mediated transformations extend the analogy between the chemistry of bleomycin and that of cytochrome P-450 and suggest strongly that bleomycin can function as a monooxygenase to effect the oxidative transformation of a variety of low molecular weight substrates also metabolized by cytochrome P-450.

Oxygen Transfer from Several Activated Bleomycin Congeners. The generality of the oxygen-transfer properties noted for bleomycin A₂ was studied by the use of several congeners of bleomycin. The analogues studied included the Fe(III) chelates of Nacetylbleomycin, 28 epibleomycin, i isobleomycin, decarbamoylbleomycin, deglycobleomycin, 29 and tallysomycin. All of these bleomycin derivatives were studied in the presence of equimolar Fe(ClO₄)₃·9H₂O following activation with \sim 30 equiv of C₆H₅IO. cis-Stilbene was employed as a substrate in each case, and the products were analyzed by HPLC. N-Acetylbleomycin, which does not cause DNA degradation, 28 was also found to be incapable of mediating the oxidation of cis-stilbene. Each of the other analogues tested did effect cis-stilbene oxidation, producing a mixture of products the main constituents of which were the same as those obtained with Fe(III)-bleomycin A₂ (Table II).

As anticipated, the active bleomycin derivatives were also capable of oxygen transfer to olefins such as cyclohexene and norbornene, but none of the analogues tested produced any oxidative product from trans-stilbene in >1-2\% yield. Cu¹¹ deglyco-BLM $A_2 + C_6H_5IO$ was also employed as a potential oxidant for cis-stilbene; as also noted for Cu¹¹·BLM A₂, oxidation of the olefin did occur, but the yields of cis-stilbene oxide were generally lower (\sim 5%) than those obtained with Fe^{III}·deglyco-BLM A₂ + C₆H₅IO (cf. Tables I and II).

Although each of the bleomycin derivatives produced the same major products from cis-stilbene, and in yields that did not vary widely, a more substantial variety of products present at lower abundance was observed in each case, and these products were not the same for each bleomycin tested. Consequently, the HPLC chromatograms were very characteristic of the particular bleomycin derivative employed for the oxidation of cis-stilbene. These characteristic patterns, which were found to be quite reproducible

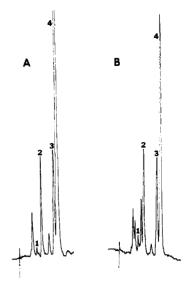
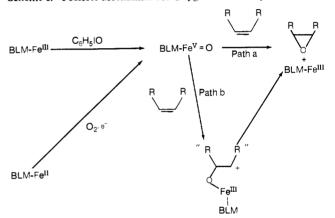



Figure 1. HPLC profiles of products formed from cis-stilbene following treatment with activated Fe-bleomycin (A) and Fe-deglycobleomycin (B). The response factors of individual products differed substantially. Compounds 1, 2, 3, and 4 were trans-stilbene oxide, cis-stilbene oxide, benzaldehyde, and deoxybenzoin, respectively.

Scheme I. Possible Mechanism for Oxygen Transfer by Fe·BLM

in replicate experiments with single bleomycins, are illustrated in Figure 1 for bleomycin A_2 and deglycobleomycin A_2 , two species that are known^{13,31} to effect DNA degradation following aerobic or anaerobic activation and that form ternary complexes of fundamentally different structure with Fe(II) + CO.31 The additional observation that some of the bleomycin congeners studied gave very similar product profiles (data not shown) suggests that these data may well reflect metal coordination geometries and provide a sensitive probe of this metallobleomycin characteristic. Since there are additional bleomycin congeners that are thought to possess altered metal coordination geometries, 32 comparison of product elution profiles following olefin oxidation may well facilitate the characterization of these species.

Mechanism of Bleomycin-Mediated Oxidative Transformations. The mechanism of oxygen activation and transfer by bleomycin is of considerable interest, especially in view of the extent to which the chemistry of bleomycin parallels that of cytochrome P-450 and related model systems (cf. Tables I and II and ref 33). While no definitive evidence concerning the mechanism of oxygen transfer by bleomycin is available at present, both the facile O-exchange noted for the activated Fe·BLM complex in H₂O and the typical monooxygenase chemistry observed following activation of bleomycin with (mono)oxygen surrogates suggests that the active

⁽²⁸⁾ Oppenheimer, N. J.; Rodriguez, L. O.; Hecht, S. M. Biochemistry

⁽²⁹⁾ Oppermenter, 1980, 19, 4096.
(29) Muraoka, Y., Suzuki, M.; Fujii, A.; Umezawa, Y.; Naganawa, H.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1981, 34, 353.
(30) Bradner, W. T. In "Bleomycin: Current Status and New Press: New York, 1978; pp 333-342.

⁽³¹⁾ Oppenheimer, N. J.; Chang, C.; Chang, L.-H.; Ehrenfeld, G.; Rodriguez, L. O.; Hecht, S. M. J. Blol. Chem. 1982, 257, 1606.
(32) Hecht, S. M., unpublished results.
(33) Ehrenfeld, G. M.; Murugesan, N.; Hecht, S. M. Inorg. Chem. 1984,

Table II. cis-Stilbene Oxidation by Fe^{ll1}·TPP, Fe^{ll1}·BLM and Cu^{ll}·BLM in Acetonitrile^a

oxidant	substrate		products (yield) ^{b,c}		
Fe (III) • TPP (CI) + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ C ₆ H ₅ (39)	C_6H_5 C_6H_5 (1)	$ \begin{array}{ccc} C_6H_5 & C_6H_5 \\ O & (2) \end{array} $	С ₆ Н ₅ СНО (1)
Fe (III) • BLM + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C_6H_5 C_6H_5 (20)	C_6H_5 C_6H_5 (8)	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ CHO (5)
Cu (II) • B LM + C ₆ H ₅ IO	C ₆ H ₅ C ₆ H ₅	C ₆ H ₅ (2	C ₆ H ₅ CHO 2) (1)		

^aOxidations with BLM were carried out in 10:1 CH₃CN-H₂O; oxidation of *cis*-stilbene with Fe•TPP was carried out in 1:1 CH₂Cl₂-CH₃CN. ^bYields were determined by HPLC analysis. No significant amounts of products were observed in the absence of BLM (or TPP). ^cYields are based on the amounts of added C₆H₃IO.

species so derived contains a single oxygen atom. The similarity of the behavior of this species and of cytochrome P-450 models in the presence of olefinic substrates prompts us to suggest that the activated intermediate derived from Fe-BLM may also involve a perferryl oxygen.8b The transfer of oxygen from this type of intermediate could be envisioned by either of two routes, as shown in Scheme I. Path "a" would involve the concerted transfer of oxygen with the regeneration of Fe¹¹¹,BLM, while path b would involve a stepwise electrophilic process. The latter possibility has the obvious virtue of providing access, in a mechanistic sense, to all of the characterized reaction products (cf. Tables I and II). Although not necessarily inconsistent with path b, the observed stereoselectivity during olefin oxidation would not be a consequence of this mechanism. Conceivably, stereoselectivity may derive from a solvent-cage effect that precludes isomerization of the short-lived radical intermediate. 10g,34

At present, there is less experimental data available for the transfer of oxygen from activated bleomycin formed by admixture of Fe¹¹.BLM + O_2 + ascorbate. Nonetheless, the findings that this activated bleomycin can also mediate the formation of typical monooxygen products from olefins, effect the hydroxylation of aromatic substrates, and participate in the O-demethylation of N,N-dimethylaniline are consistent with the postulate that a perferryl ion may also be accessible by incubation of Fe¹¹.BLM with ascorbate in the presence of $O_2^{6b,32,33}$ (cf. Scheme I). Also consistent with the postulate were the observations that olefin epoxidation, substrate hydroxylation, and DNA strand scission by aerobically activated Fe¹¹.BLM were all dramatically accelerated by sources of $e^{-32,35}$

While the chemistry mediated by activated Cu·BLM was generally quite similar to that of Fe·BLM following anaerobic activation with C_6H_5IO , 36 little direct evidence has been accumulated concerning the nature of relevant intermediates. Nonetheless, it is interesting to note that Valentine and coworkers 37 have recently described olefin epoxidations mediated by $Cu(NO_3)_2 + C_6H_5IO$.

Experimental Section

Bleomycin A_2 was obtained by fractionation of blenoxane, as described, ³⁸ N-Acetylbleomycin A_2 , ²⁸ epibleomycin A_2 , ³⁹ isobleomycin

 A_2 ,⁴⁰ decarbamoylbleomycin A_2 ,⁴¹ and deglycobleomycin A_2 ,^{13,31} were obtained by modification of bleomycin A_2 . Fe(ClO₄)₃,9H₂O, Fe(N-H₄)₂(SO₄)₂.6H₂O, and CuCl₂·2H₂O were used to prepare the corresponding metal complexes of the bleomycins. The alkenes were commercially available and purified either by distillation or recrystallization prior to use. The cis- and trans-stilbenes were contaminated with ca. 3% and 1% of the other stereoisomer, respectively. The authentic epoxides of cyclohexene, norbornene, cis- and trans-stilbene, and styrene were prepared by treatment with 1.1 equiv of m-chloroperbenzoic acid in chloroform; the epoxides were isolated following extractive workup. Reagent grade methanol was degassed prior to use. Iodosobenzene was prepared from iodobenzene diacetate by the method of Saltzman and Sharefkin.⁴²

¹H NMR spectra were obtained either on a Varian EM-390 (90 MHz) spectrometer or on a Nicolet NT-360 (360 MHz) spectrometer. For gas chromatography-mass spectrometry, a Varian 3700 gas chromatograph was coupled to a VG-Micromass 70/70 HS mass spectrometer. The oxidation products obtained using norbornene or cyclohexene as substrates were analyzed on a SP-1000 fused silica capillary column. Quantitation was effected by comparing the total ion current areas for identified components with the total ion current area of iodobenzene. Since the quantity of iodobenzene is known, the quantities of other identified components present were obtained as simple proportionalities. No corrections for differing molar response factors were made.

HPLC was performed using a Waters HPLC system equilibrated and run in 7:3 cyclohexane-chloroform (spectral grade) with an Alltech Associates (25 cm × 4.6 mm) analytical silica gel column. Compounds were detected by the absorbance at 254 nm, and quantitation was accomplished by comparison of peak areas with those of authentic samples.

complished by comparison of peak areas with those of authentic samples. Olefln Oxidation Using Fe^{III}.TPP(CI) and Iodosobenzene. A solution containing 3.5 mg (5.0 μ mol) of (chlorotetraphenylporphyrinato)iron(III) and 45 mg (0.25 mmol) of cis-stilbene in 5 mL of CH₂Cl₂ (or 5 mL of 1:1 CH₂Cl₂-CH₃CN) was treated with 25 mg (113 μ mol) of solid iodosobenzene in portions over a period of 15 min. The combined solution was stirred under argon at 25 °C for 2 h then analyzed by HPLC as described above.

Olefin Oxidation Using Fe¹¹¹-BLM and Iodosobenzene. In a typical experiment, a solution containing 3.1 mg (2.1 μ mol) of Fe¹¹¹-BLM A₂ (formed by admixture of equimolar BLM A₂ and Fe(ClO₄)₃·9H₂O in 1.0 mL of 6:4 CH₃OH-H₂O) was combined under N₂ with a solution containing 80 mg (0.44 mmol) of *cis*-stilbene in 2.0 mL of methanol. A

⁽³⁴⁾ Groves, J. T.; Akinbote, O. F.; Avaria, G. E. In "Microsomes, Drug Oxidations and Chemical Carcinogenesis"; Coon, M. J.; Conney, A. H.; Estabrook, R. W.; Gelboin, H. V.; Gillette, J. R.; O'Brien, P. J., Eds.; Academic Press: New York, 1980: p. 253.

demic Press: New York, 1980; p 253.
(35) Kuramochi, H.; Takahashi, K.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1981, 34, 576.

⁽³⁶⁾ See also ref 6b, 11, and 12.

⁽³⁷⁾ Franklin, C. C.; VanAtta, R. B.; Fan Tai, A.; Valentine, J. S. J. Am. Chem. Soc. 1984, 106, 814.

^{(38) (}a) Chien, M.; Grollman, A. P.; Horwitz, S. B. Biochemistry 1977, 16, 3641. (b) Oppenheimer, N. J.; Rodriguez, L. O.; Hecht, S. M. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 5616.

⁽³⁹⁾ Muraoka, Y.; Kobayashi, H.; Fujii, A.; Kunishima, M.; Fujii, T.; Nakayama, Y.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1976, 29, 1853. (40) (a) Nakayama, Y.; Kunishima, M.; Omoto, S.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1973, 26, 400. (b) Nakayama, Y.; Kunishima, M.;

Omoto, S.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1973, 26, 500. (41) Naganawa, H.; Muraoka, Y.; Takita, T.; Umezawa, H. J. Antibiot. (Tokyo) 1977, 30, 388.

⁽⁴²⁾ Saltzman, H.; Sharefkin, J. G. "Organic Synth"; Wiley: New York, 1973; Collect Vol. V, p 658.

solution of iodosobenzene (15 mg, 68 $\mu mol)$ in 1.5 mL of methanol was added dropwise over a period of 15 min, and the combined solution was stirred at room temperature for 1–2 h. Workup of the reaction mixture was accomplished by dilution with 25 mL of water and extraction with CH₂Cl₂ (3 × 15 mL). The resulting reaction product(s) was analyzed as indicated in the tables. Olefin oxidations carried out in aqueous acetonitrile typically employed 5.0 μmol of FeIII-BLM A₂ in 400 μL of H₂O under N₂, which was treated with 45 mg (0.25 mmol) of cls-stillen 4.5 mL of CH₃CN. The combined solution was then treated with 20 mg (90 μmol) of C₆H₃IO, which was added as a solid in five portions over a period of 20 min. The reaction mixture was stirred at 25 °C for 1 h, then partitioned between CHCl₃ and water, and analyzed as indicated in the tables.

The oxidation of cis-stilbene with iodobenzene diacetate activated bleomycin was carried out in the same fashion in aqueous methanol, with the exception that the reaction was analyzed after 1.5 and 12 h. Attempted oxidations with Cu¹¹-BLM were run analogously, with the exception that 5 equiv of Cu(II) (relative to BLM) were employed in the case of Cu¹¹-BLM.

Olefin Oxidation Using Fe¹¹¹·BLM and Sodium Metaperiodate. A solution containing 3.1 mg (2.1 μ mol) of Fe¹¹¹·BLM in 1.0 mL of 6:4 methanol-water was combined with a solution containing 80 mg (0.44 mmol) of cis-stilbene in 2.5 mL of methanol. A solution containing 15 mg (70.1 μ mol) of sodium metaperiodate in 1.5 mL of 50% aqueous methanol was added dropwise over a period of 15 min, and the combined solution was stirred at room temperature for 1 h. Workup of the reaction mixture was carried out by dilution with 25 mL of water and extraction of the aqueous phase with CHCl₃ (3 × 5 mL).

Olefin Oxidation Using Fe^{III}·BLM and Ethyl Hydrogen Peroxide. An anaerobic solution containing 50 μ g (0.096 μ mol) of Fe(ClO₄)₃·9H₂O and 100 μ g (0.07 μ mol) of bleomycin A₂ in 45 μ L of 65% aqueous methanol was treated with 2 mg (11.1 μ mol) of cis-stilbene in 100 μ L of methanol. Ethyl hydrogen peroxide (10% solution, 14 μ L, 2.25 μ mol) was then added dropwise in 50 μ L of methanol over a period of 10 min. After an additional 1 h at 25 °C, the reaction mixture was concentrated and the products analyzed by HPLC.

trans-Cyclohexane-1,2-dlol Monomethyl Ether.⁴³ To a solution of 1.0 g (10.2 mmol) of cyclohexene oxide in 10 mL of methanol was added 50 μ L of concentrated H₂SO₄. The solution was stirred overnight at 25 °C, then diluted with 30 mL of CHCl₃, and washed with three portions of saturated aqueous NaHCO₃. The organic phase was dried (Na₂SO₄) and concentrated to afford trans-cyclohexane-1,2-diol monomethyl ether as a colorless liquid, yield 0.87 g (65%). The ¹H NMR spectrum (CDCl₃, (CH₃)₄Si) contained an OCH₃ resonance at δ 3.13; silica gel TLC (4:1 hexane—ethyl acetate) R_f 0.30.

cis-Cyclohexane-1,2-diol Monomethyl Ether.⁴⁴ A solution of transcyclohexane-1,2-diol monomethyl ether (0.8 g, 6.15 mmol) in 3 mL of dry pyridine was cooled to 0 °C and then treated dropwise with 1.2 mL of methanesulfonyl chloride. After it was stirred for 3 h at 25 °C, the reaction mixture was treated with water (0.5 mL) and stirred for an additional 30 min. The reaction mixture was then poured into 50 mL of ice water and extracted with two 15-mL portions of CHCl₃. The chloroform extract was dried and concentrated and the residue was purified by vacuum distillation (bp 130 °C (0.1 mm)), affording 0.5 g (39%) of trans-2-(methoxycyclohexyl)methanesulfonate as a colorless liquid.

The mesylate was dissolved in 25 mL of dry dimethylformamide and the solution was heated at reflux for 6 h in the presence of 3 g of sodium benzoate. The cooled reaction mixture was diluted with water (25 mL) and extracted with 20 mL of CHCl₃. The chloroform extract was washed with aqueous NaHCO₃ (3 × 15 mL) and water (2 × 15 mL) and then dried (Na₂SO₄). Concentration of the CHCl₃ solution provided 0.6 g (100%) of cis-2-(methoxycyclohexyl)benzoate as a colorless liquid.

The benzoate (0.6 g) was added to a mixture of 10 mL of CH₃OH, 10 mL of H₂O, and 1.0 g of NaOH. The resulting cloudy solution was clarified by the addition of another 6 mL of CH₃OH and was then heated at reflux for 2 h. The cooled reaction mixture was partitioned between H₂O (100 mL) and CHCl₃ (25 mL). The organic layer was dried (Na₂SO₄) and concentrated to afford 0.35 g of a yellow liquid, which was purified by chromatography on a silica gel column. cis-Cyclohexane-1,2-diol monomethyl ether was isolated as a light amber liquid, yield 0.3 g (96%): 1 H NMR (CDCl₃, (CH₃)₄Si) δ 3.18 (s, 3, OCH₃); silica gel TLC (4:1 hexane-ethyl acetate) R_f 0.35.

Oxidation of cis-Stilbene in the Presence of Fe^{II}-BLM, Ascorbate and Dioxygen. A solution containing 3.0 mg (2.07 μ mol) of BLM A, in 100

 μL of H_2O was treated with 20 mg (0.11 mmol) of cis-stilbene in 3 mL of methanol and then with 0.85 mg (2.16 μ mol) of ferrous ammonium sulfate in 0.2 mL of 50% aqueous methanol. The resulting brownish combined solution was treated with solid sodium ascorbate (20 mg, 0.10 mmol), and the resulting solution was stirred in the presence of air for 1 h. The reaction mixture was treated with CHCl₃ (20 mL) and partitioned against H_2O (2 × 20 mL). The dried organic phase was concentrated and analyzed by HPLC as described above.

Oxidation of cis-Stilbene in the Presence of ¹⁸O-Labeled C_5H_6IO and H_2O . A solution consisting of 1.0 mg (0.68 μ mol) of Fe¹¹¹.BLM A_2 in 25 μ L of $H_2^{16}O$ and 200 μ L of anhydrous methanol was maintained under N_2 and treated dropwise with a solution of 6 mg (27 μ mol) of $C_6H_5I^{18}O$ (prepared as described by Groves et al. ¹⁵) in 200 μ L of CH₃OH over a period of 10 min. The combined solution was maintained at 25 °C for 1 h and then concentrated to dryness. The residue was applied to a silica gel TLC plate; development with 7% ethyl acetate in hexane permitted isolation of pure cis-stilbene oxide, which was analyzed for isotope content by mass spectrometry.

In a complementary experiment, cis-stilbene was oxidized in the presence of $C_6H_3I^{16}O$ and $H_2^{18}O$.

Oxidation of cis-Stilbene in the Presence of Fe^{III}·BLM and (Tosyllminolodo)benzene. A solution containing 3.1 mg (2.1 μ mol) of Fe^{III}·BLM A₂ in 1.0 mL of 6:4 CH₃OH-H₂O was added to 80 mg (0.44 mmol) of cis-stilbene in 3.0 mL of methanol. A solution containing 25 mg (67 μ mol) of (p-tosyliminoiodo)benzene in 1.0 mL of CH₃OH was then added dropwise over a period of 10 min. The combined solution was stirred under N₂ at 25 °C for 1 h, then diluted with CHCl₃, and washed with water. The dried organic layer was concentrated, and the liquid residue (72 mg) was fractionated on a preparative silica gel TLC plate; development was with 7% ethyl acetate in hexane. The products isolated from the reaction included cis-stilbene oxide (2.7 mg, 21%), deoxybenzoin (0.85 mg, 7%), and unreacted cis-stilbene.

Determination of Optical Purity of Styrene Oxide. Styrene oxide (3 mg, 25 μ mol), obtained by the oxidation of styrene using Fe^{III}-BLM + iodosobenzene in the same fashion as reported above for cis-stilbene, was dissolved in CDCl₃ (0.3 mL) and solid portions of the chiral NMR lanthanide shift reagent tris[3-((heptafluoropropyl)hydroxymethylene)-d-camphorato]europium(III) (Eu(hfc)₃) were added incrementally and a series of ¹H NMR spectra were obtained. A desired separation of enantiomeric α and β protons of styrene epoxide was obtained at a 0.035 mM concentration of shift reagent. The pertinent shift data obtained are $\Delta\Delta\delta$ (α -H) 0.18, (trans- β -H) 0.40, and (cis- β -H) 0.2. Integration of the fully separated enantiomeric peaks showed the presence of equal amounts of R and S epoxides.

When the experiment was repeated with authentic racemic styrene oxide using similar concentrations of oxide and shift reagent, comparable results were obtained.

Oxidation of p-Deuterloanisole with Fe(II)–Bleomycin and Ascorbate. A solution of 3.0 mg (2.1 μ mol) of BLM A_2 in 100 μ L of H_2O was combined with a 3.0-mL methanolic solution of p-deuterioanisole 10g (12 mg, 0.11 mmol). Ferrous ammonium sulfate (0.85 mg, 2.16 μ mol) in 0.2 mL of 50% aqueous methanol was added, and the resulting brown solution was treated with solid sodium ascorbate (20 mg, 0.10 mmol). The reaction mixture was stirred at 25 °C in the presence of air for 1 h, then diluted with 10 mL of ether, extracted with water (2 \times 15 mL), and dried (MgSO₄). The solution was analyzed both by gas chromatography–mass spectrometry and also by chromatographic isolation on silica gel, followed by electron impact mass spectrometry.

Oxidation of Naphthalene with Fe(II)-Bleomycin and Ascorbate. A solution of 3.0 mg (2.1 μ mol) of BLM A₂ in 100 μ L of H₂O was treated with a solution containing 15 mg (0.12 mmol) of naphthalene in 3.0 mL of methanol. Ferrous ammonium sulfate (0.85 mg, 2.16 μ mol) in 0.2 mL of 50% aqueous methanol was added, and the combined solution was treated with solid sodium ascorbate (20 mg, 0.10 mmol) to initiate the oxidation. The reaction mixture was stirred in the presence of air for 1 h, then treated with 20 mL of CHCl₃, and washed with portions of H₂O. The dried organic layer was concentrated, and the residue was purified by silica gel TLC, development with CHCl₃. Elution of the appropriate band (R_f 0.33) provided α -naphthol, identified by chemical ionization mass spectrometry (m/z, 145 (M + H)⁺) and comparison with an authentic sample by TLC, yield 0.5 mg (172%, based on bleomycin A₂).

N-Demethylation of N, N-Dimethylanlline. A solution containing 7.3 mg (4.96 μ mol) of Fe^{III}·BLM in 200 μ L of H₂O was combined with a solution containing 80 mg (0.66 mmol) of freshly distilled N, N-dimethylanlline in 5 mL of methanol. The combined solution was treated dropwise under N₂ with 1 mL of CH₃OH containing 30 mg (136 μ mol) of iodosobenzene; addition of the oxidant was completed within 10 min. The resulting solution was stirred at 25 °C for 1 h, then diluted with 20 mL of CHCl₃, and washed with two portions of H₂O. The organic layer was dried (Na₂SO₄) and concentrated to afford a brown liquid residue

⁽⁴³⁾ Mousseron, M.; Granger, R.; Merle, A. Bull. Soc. Chim. Fr. 1947, 459.

⁽⁴⁴⁾ Buck, K. W.; Foster, A. B.; Labib, A.; Webber, J. M. J. Chem. Soc. 1964, 2846.

which was analyzed by HPLC and found to consist of a mixture of N-methylaniline (identical chromatographically with an authentic sample) and unreacted starting material. The yield of N-methylaniline was 40%, based on added C₆H₅IO (1100% yield, based on added BLM).

The demethylation of N,N-dimethylaniline was also effected by using Fe¹¹·BLM in the presence of ascorbate and O₂. A solution containing 3.0 mg (2.1 μ mol) of BLM A₂ in 100 μ L of H₂O was combined with a 3.0-mL methanolic solution containing 15 mg (0.12 mmol) of freshly distilled N,N-dimethylaniline in 2 mL of methanol. Ferrous ammonium sulfate (0.85 mg, 2.16 µmol) in 0.2 mL of 50% aqueous CH₃OH was added, followed by solid sodium ascorbate (20 mg, 0.10 mmol). The reaction mixture was stirred in the presence of air for 1 h, then treated with 20 mL of CHCl₃ and extracted with water (2 × 20 mL). The dried organic layer was analyzed by HPLC and found to contain a mixture of N-methylaniline (yield 140%, based on bleomycin) and unreacted N,Ndimethylaniline.

Oxidation of Olefins with Feltl-BLM Analogues and Iodosobenzene. In a typical experiment, an anaerobic solution containing 50 μ g (0.096 μmol) of Fe(ClO₄)₃·9H₂O and 100 μg (0.09 μmol) of deglycobleomycin

 A_2 in 45 μ L of 65% aqueous methanol was treated with 2 mg (11.1 μ mol) of cls-stilbene in 100 μ L of methanol. Iodosobenzene (0.5 mg, 2.3 μ mol) was then added dropwise via a microsyringe from a 20-μL methanol solution over a period of 10-15 min. After 1 h at room temperature, the reaction mixture was concentrated and the products were analyzed by HPLC vs. authentic samples and by ¹H NMR spectroscopy at 360 MHz.

Acknowledgment. We thank Dr. William Bradner, Bristol Laboratories, for samples of tallysomycin A and blenoxane and Dr. Li-Ho Chang for preparation of the bleomycin analogues. We thank Dennis Shaw (University of Virginia) and Walter Johnson. Gerald Roberts, and Dr. Susan Rottschaefer (Smith Kline & French Laboratories) for assistance in determining the isotope ratios reported. Some of the GC-mass spectra were obtained with the assistance of Harvey Laboratories, Charlottesville, VA. This work was supported by Research Grant CA-29235, awarded by the National Cancer Institute, Department of Health and Human Services.

Communications to the Editor

Control of Ring Junction Stereochemistry via Radical Cyclization

Gilbert Stork* and Michael Kahn

Department of Chemistry, Columbia University New York, New York 10027 Received July 30, 1984

Continuation of our work on the use of free radical reactions in the control of the stereochemistry of carbon-carbon bonds¹⁻³ has now led us to a new method which appears promising for the control of ring junction stereochemistry.

We have reported¹⁻³ that it is possible to use an allylic hydroxyl to introduce a functional alkyl chain such that the new carboncarbon bond not only has defined (hydroxyl vicinal) regiochemistry but also, when starting with cyclic allylic alcohols, totally determined stereochemistry (cis to the original hydroxyl). The formal scheme is illustrated.

The success of this scheme depended (1) on finding means of achieving an easily removed connection of a two-atom chain terminating in a carbon-centered radical and (2) on the fact that the transition-state geometry for addition of the radical center $(B \rightarrow C)$ can only lead to the cis fusion of the new five-membered ring. A special virtue of this general process is that, after the necessary allylic hydroxyl has served its stereochemical control function, it can, in principle, be either inverted or removed.

Stereo- and regiochemical control at the near end of the allylic double bond is not the only control that can be derived from the original allylic hydroxyl. The newly formed cis-fused five-membered ring imposes a cup shape on the resulting bicyclic system, so that, in the absence of overriding competing steric hindrance, access to the radical resulting from the initial closure should be largely restricted to the convex side. This is well illustrated, using a mixed-acetal function to achieve a temporary link to the allylic hydroxyl, by the highly stereoselective transfer of a cyano group (E to F).4

It is the ability of this type of radical cyclization process to control stereochemistry at the far end of the double bond of a cyclic allylic alcohol that makes possible the control of ring junction stereochemistry.

Consider the allylic alcohol 1 (from sodium borohydride reduction of the corresponding octalone). Reaction of its mixed bromoacetal with tributylstannane leads to a cyclic acetal 2 in which the newly formed decalin fusion is trans: The lactone 3

derived from Jones oxidation has a singlet methyl at δ 1.06, a position that strongly suggests the trans ring junction which would result from the approach of tributylstannane from the convex side. Confirmation of this stereochemical conclusion was easily obtained from the 1,3-glycol derived from the use of a silyl ether⁵ rather

⁽¹⁾ Stork, G.; Mook, R., Jr.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741.

⁽²⁾ Stork, G. In "Current Trends in Organic Synthesis"; Nozaki, H., Ed.; Pergamon Press: Oxford, 1983; pp 359-371.

(3) Stork, G. In "Selectivity—A Goal for Synthetic Efficiency"; Bartmann, W., Trost, B. M., Ed.; Verlag Chemie: Basel, 1984; pp 281-299.

⁽⁴⁾ Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1983, 105, 6765.